Skip to main content
Journal cover image

Sexually dimorphic fin regeneration in zebrafish controlled by androgen/GSK3 signaling.

Publication ,  Journal Article
Nachtrab, G; Czerwinski, M; Poss, KD
Published in: Curr Biol
November 22, 2011

Certain fish and amphibians regenerate entire fins and limbs after amputation, whereas such potential is absent in birds and limited in mammals to digit tips [1, 2]. Additionally, regenerative success can change during life stages. Anuran tadpoles gradually lose the capacity to regenerate limbs [3, 4], and digit regeneration occurs more effectively in fetal mice and human children than adults [5-8]. Little is known about mechanisms that control regenerative capacity. Here, we identify an unexpected difference between male and female zebrafish in the regenerative potential of a major appendage. Males display regenerative defects in amputated pectoral fins, caused by impaired blastemal proliferation. This regenerative failure emerges after sexual maturity, is mimicked in androgen-treated females, and is suppressed in males by androgen receptor antagonism. Androgen signaling maintains expression of dkk1b and igfbp2a, which encode secreted inhibitors of Wnt and Igf signaling, respectively. Furthermore, the regulatory target of Wnts and Igfs, GSK3β, is inefficiently inactivated in male fin regenerates compared with females. Pharmacological inhibition of GSK3 in males increases blastemal proliferation and restores regenerative pattern. Our findings identify a natural sex bias in appendage regenerative capacity and indicate an underlying regulatory circuit in which androgen locally restricts key morphogenetic programs after amputation.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Curr Biol

DOI

EISSN

1879-0445

Publication Date

November 22, 2011

Volume

21

Issue

22

Start / End Page

1912 / 1917

Location

England

Related Subject Headings

  • Zebrafish Proteins
  • Zebrafish
  • Signal Transduction
  • Sexual Maturation
  • Sex Characteristics
  • Regeneration
  • Receptors, Androgen
  • Molecular Sequence Data
  • Male
  • Intercellular Signaling Peptides and Proteins
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Nachtrab, G., Czerwinski, M., & Poss, K. D. (2011). Sexually dimorphic fin regeneration in zebrafish controlled by androgen/GSK3 signaling. Curr Biol, 21(22), 1912–1917. https://doi.org/10.1016/j.cub.2011.09.050
Nachtrab, Gregory, Michael Czerwinski, and Kenneth D. Poss. “Sexually dimorphic fin regeneration in zebrafish controlled by androgen/GSK3 signaling.Curr Biol 21, no. 22 (November 22, 2011): 1912–17. https://doi.org/10.1016/j.cub.2011.09.050.
Nachtrab G, Czerwinski M, Poss KD. Sexually dimorphic fin regeneration in zebrafish controlled by androgen/GSK3 signaling. Curr Biol. 2011 Nov 22;21(22):1912–7.
Nachtrab, Gregory, et al. “Sexually dimorphic fin regeneration in zebrafish controlled by androgen/GSK3 signaling.Curr Biol, vol. 21, no. 22, Nov. 2011, pp. 1912–17. Pubmed, doi:10.1016/j.cub.2011.09.050.
Nachtrab G, Czerwinski M, Poss KD. Sexually dimorphic fin regeneration in zebrafish controlled by androgen/GSK3 signaling. Curr Biol. 2011 Nov 22;21(22):1912–1917.
Journal cover image

Published In

Curr Biol

DOI

EISSN

1879-0445

Publication Date

November 22, 2011

Volume

21

Issue

22

Start / End Page

1912 / 1917

Location

England

Related Subject Headings

  • Zebrafish Proteins
  • Zebrafish
  • Signal Transduction
  • Sexual Maturation
  • Sex Characteristics
  • Regeneration
  • Receptors, Androgen
  • Molecular Sequence Data
  • Male
  • Intercellular Signaling Peptides and Proteins