Skip to main content
Journal cover image

Ultrafast singlet excited-state polarization in electronically asymmetric ethyne-bridged bis[(porphinato)zinc(II)] complexes.

Publication ,  Journal Article
Rubtsov, IV; Susumu, K; Rubtsov, GI; Therien, MJ
Published in: Journal of the American Chemical Society
March 2003

The excited-state dynamics of two conjugated bis[(porphinato)zinc(II)] (bis[PZn]) species, bis[(5,5'-10,20-bis[3,5-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II)]ethyne (DD) and [(5,-10,20-bis[3,5-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II)]-[(5',-15'-ethynyl-10',20'-bis(heptafluoropropyl)porphinato)zinc(II)]ethyne (DA), were studied by pump-probe transient absorption spectroscopy and hole burning techniques. Both of these meso-to-meso ethyne-bridged bis[PZn] compounds display intense near-infrared (NIR) transient S(1)-->S(n) absorptions and fast relaxation of their initially prepared, electronically excited Q states. Solvational and conformational relaxation play key roles in both DD and DA ground- and excited-state dynamics; in addition to these processes that drive spectral diffusion, electronically excited DA manifests a 3-fold diminution of S(1)-->S(0) oscillator strength on a 2-20 ps time scale. Both DD and DA display ground-state and time-dependent excited-state conformational heterogeneity; hole burning experiments show that this conformational heterogeneity is reflected largely by the extent of porphyrin-porphyrin conjugation, which varies as a function of the pigment-pigment dihedral angle distribution. While spectral diffusion can be seen for both compounds, rotational dynamics driving configurational averaging (tau approximately 30 ps), along with a small solvational contribution, account for essentially all of the spectral changes observed for electronically excited DD. For DA, supplementary relaxation processes play key roles in the excited-state dynamics. Two fast solvational components (0.27 and 1.7 ps) increase the DA excited-state dipole moment and reduce concomitantly the corresponding S(1)-->S(0) transition oscillator strength; these data show that these effects derive from a time-dependent change of the degree of DA S(1)-state polarization, which is stimulated by solvation and enhanced excited-state inner-sphere structural relaxation.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of the American Chemical Society

DOI

EISSN

1520-5126

ISSN

0002-7863

Publication Date

March 2003

Volume

125

Issue

9

Start / End Page

2687 / 2696

Related Subject Headings

  • Zinc
  • Spectrum Analysis
  • Spectroscopy, Near-Infrared
  • Spectrometry, Fluorescence
  • Metalloporphyrins
  • General Chemistry
  • 40 Engineering
  • 34 Chemical sciences
  • 03 Chemical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Rubtsov, I. V., Susumu, K., Rubtsov, G. I., & Therien, M. J. (2003). Ultrafast singlet excited-state polarization in electronically asymmetric ethyne-bridged bis[(porphinato)zinc(II)] complexes. Journal of the American Chemical Society, 125(9), 2687–2696. https://doi.org/10.1021/ja021157p
Rubtsov, Igor V., Kimihiro Susumu, Grigorii I. Rubtsov, and Michael J. Therien. “Ultrafast singlet excited-state polarization in electronically asymmetric ethyne-bridged bis[(porphinato)zinc(II)] complexes.Journal of the American Chemical Society 125, no. 9 (March 2003): 2687–96. https://doi.org/10.1021/ja021157p.
Rubtsov IV, Susumu K, Rubtsov GI, Therien MJ. Ultrafast singlet excited-state polarization in electronically asymmetric ethyne-bridged bis[(porphinato)zinc(II)] complexes. Journal of the American Chemical Society. 2003 Mar;125(9):2687–96.
Rubtsov, Igor V., et al. “Ultrafast singlet excited-state polarization in electronically asymmetric ethyne-bridged bis[(porphinato)zinc(II)] complexes.Journal of the American Chemical Society, vol. 125, no. 9, Mar. 2003, pp. 2687–96. Epmc, doi:10.1021/ja021157p.
Rubtsov IV, Susumu K, Rubtsov GI, Therien MJ. Ultrafast singlet excited-state polarization in electronically asymmetric ethyne-bridged bis[(porphinato)zinc(II)] complexes. Journal of the American Chemical Society. 2003 Mar;125(9):2687–2696.
Journal cover image

Published In

Journal of the American Chemical Society

DOI

EISSN

1520-5126

ISSN

0002-7863

Publication Date

March 2003

Volume

125

Issue

9

Start / End Page

2687 / 2696

Related Subject Headings

  • Zinc
  • Spectrum Analysis
  • Spectroscopy, Near-Infrared
  • Spectrometry, Fluorescence
  • Metalloporphyrins
  • General Chemistry
  • 40 Engineering
  • 34 Chemical sciences
  • 03 Chemical Sciences