Skip to main content
Journal cover image

Growth signaling at the nexus of stem cell life and death.

Publication ,  Journal Article
Wood, KC; Sabatini, DM
Published in: Cell Stem Cell
September 4, 2009

Stress can activate tumor-suppressive mechanisms, causing the loss of adult stem cell function with age. In this issue of Cell Stem Cell and in Nature, Castilho et al. (2009) and Harrison et al. (2009) highlight the importance of mTOR signaling in stem cell exhaustion and mammalian aging, respectively.

Duke Scholars

Published In

Cell Stem Cell

DOI

EISSN

1875-9777

Publication Date

September 4, 2009

Volume

5

Issue

3

Start / End Page

232 / 234

Location

United States

Related Subject Headings

  • beta Catenin
  • Wnt Proteins
  • TOR Serine-Threonine Kinases
  • Stem Cells
  • Signal Transduction
  • Protein Kinases
  • Models, Biological
  • Mice
  • Hair Follicle
  • Developmental Biology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Wood, K. C., & Sabatini, D. M. (2009). Growth signaling at the nexus of stem cell life and death. Cell Stem Cell, 5(3), 232–234. https://doi.org/10.1016/j.stem.2009.08.008
Wood, Kris C., and David M. Sabatini. “Growth signaling at the nexus of stem cell life and death.Cell Stem Cell 5, no. 3 (September 4, 2009): 232–34. https://doi.org/10.1016/j.stem.2009.08.008.
Wood KC, Sabatini DM. Growth signaling at the nexus of stem cell life and death. Cell Stem Cell. 2009 Sep 4;5(3):232–4.
Wood, Kris C., and David M. Sabatini. “Growth signaling at the nexus of stem cell life and death.Cell Stem Cell, vol. 5, no. 3, Sept. 2009, pp. 232–34. Pubmed, doi:10.1016/j.stem.2009.08.008.
Wood KC, Sabatini DM. Growth signaling at the nexus of stem cell life and death. Cell Stem Cell. 2009 Sep 4;5(3):232–234.
Journal cover image

Published In

Cell Stem Cell

DOI

EISSN

1875-9777

Publication Date

September 4, 2009

Volume

5

Issue

3

Start / End Page

232 / 234

Location

United States

Related Subject Headings

  • beta Catenin
  • Wnt Proteins
  • TOR Serine-Threonine Kinases
  • Stem Cells
  • Signal Transduction
  • Protein Kinases
  • Models, Biological
  • Mice
  • Hair Follicle
  • Developmental Biology