Conifold transitions in m-theory on calabi-yau fourfolds with background fluxes
We consider topology changing transitions for M-theory compactifications on Calabi-Yau fourfolds with background G-flux. The local geometry of the transition is generically a genus g curve of conifold singularities, which engineers a 3d gauge theory with four supercharges, near the intersection of Coulomb and Higgs branches. We identify a set of canonical, minimal flux quanta which solve the local quantization condition on G for a given geometry, including new solutions in which the flux is neither of horizontal nor vertical type. A local analysis of the flux superpotential shows that the potential has flat directions for a subset of these fluxes and the topologically different phases can be dynamically connected. For special geometries and background configurations, the local transitions extend to extremal transitions between global fourfold compactifications with flux. By a circle decompactification the M-theory analysis identifies consistent flux configurations in four-dimensional F-theory compactifications and flat directions in the deformation space of branes with bundles. © 2013 International Press.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Nuclear & Particles Physics
- 5107 Particle and high energy physics
- 4902 Mathematical physics
- 0206 Quantum Physics
- 0105 Mathematical Physics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Nuclear & Particles Physics
- 5107 Particle and high energy physics
- 4902 Mathematical physics
- 0206 Quantum Physics
- 0105 Mathematical Physics