Change-based threat detection in urban environments with a forward-looking camera
Roadside explosive threats continue to pose a significant risk to soldiers and civilians in conflict areas around the world. These objects are easy to manufacture and procure, but due to their ad hoc nature, they are difficult to reliably detect using standard sensing technologies. Although large roadside explosive hazards may be difficult to conceal in rural environments, urban settings provide a much more complicated background where seemingly innocuous objects (e.g., piles of trash, roadside debris) may be used to obscure threats. Since direct detection of all innocuous objects would flag too many objects to be of use, techniques must be employed to reduce the number of alarms generated and highlight only a limited subset of possibly threatening regions for the user. In this work, change detection techniques are used to reduce false alarm rates and increase detection capabilities for possible threat identification in urban environments. The proposed model leverages data from multiple video streams collected over the same regions by first applying video aligning and then using various distance metrics to detect changes based on image keypoints in the video streams. Data collected at an urban warfare simulation range at an Eastern US test site was used to evaluate the proposed approach, and significant reductions in false alarm rates compared to simpler techniques are illustrated. © 2012 SPIE.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering