Compact implementation strategy for a harmonic balance method within implicit flow solvers
A two-step approximate factorization technique for implementing a computationally stable nonlinear unsteady frequency-domain harmonic balance solution method within existing implicit computational fluid dynamic flow solver codes is presented. The approach uses an explicit discretization of the harmonic balance source term, and no new implicit code development is required. Both of these features enable the harmonic balance method to be implemented within existing implicit flow solver codes with minimal modification necessary to the underlying flow solver code. The resulting harmonic balance solver can then be used for modeling nonlinear periodic unsteady flows. The methodology is applied to the NASA OVERFLOW flow solver code, and results are presented for transonic viscous flow past an unsteady pitching airfoil section.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Aerospace & Aeronautics
- 4012 Fluid mechanics and thermal engineering
- 4001 Aerospace engineering
- 0913 Mechanical Engineering
- 0905 Civil Engineering
- 0901 Aerospace Engineering
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Aerospace & Aeronautics
- 4012 Fluid mechanics and thermal engineering
- 4001 Aerospace engineering
- 0913 Mechanical Engineering
- 0905 Civil Engineering
- 0901 Aerospace Engineering