Skip to main content

CT-guided, automated detection of lung tumors on PET images

Publication ,  Journal Article
Cui, Y; Zhao, B; Akhurst, TJ; Yan, J; Schwartz, LH
Published in: Progress in Biomedical Optics and Imaging Proceedings of SPIE
June 2, 2008

The calculation of standardized uptake values (SUVs) in tumors on serial [18F]2-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET) images is often used for the assessment of therapy response. We present a computerized method that automatically detects lung tumors on 18F-FDG PET/Computed Tomography (CT) images using both anatomic and metabolic information. First, on CT images, relevant organs, including lung, bone, liver and spleen, are automatically identified and segmented based on their locations and intensity distributions. Hot spots (SUV >= 1.5) on 18F-FDG PET images are then labeled using the connected component analysis. The resultant "hot objects" (geometrically connected hot spots in three dimensions) that fall into, reside at the edges or are in the vicinity of the lungs are considered as tumor candidates. To determine true lesions, further analyses are conducted, including reduction of tumor candidates by the masking out of hot objects within CT-determined normal organs, and analysis of candidate tumors' locations, intensity distributions and shapes on both CT and PET. The method was applied to 18F-FDG-PET/CT scans from 9 patients, on which 31 target lesions had been identified by a nuclear medicine radiologist during a Phase II lung cancer clinical trial. Out of 31 target lesions, 30 (97%) were detected by the computer method. However, sensitivity and specificity were not estimated because not all lesions had been marked up in the clinical trial. The method effectively excluded the hot spots caused by mediastinum, liver, spleen, skeletal muscle and bone metastasis.

Duke Scholars

Published In

Progress in Biomedical Optics and Imaging Proceedings of SPIE

DOI

ISSN

1605-7422

Publication Date

June 2, 2008

Volume

6915
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Cui, Y., Zhao, B., Akhurst, T. J., Yan, J., & Schwartz, L. H. (2008). CT-guided, automated detection of lung tumors on PET images. Progress in Biomedical Optics and Imaging Proceedings of SPIE, 6915. https://doi.org/10.1117/12.770549
Cui, Y., B. Zhao, T. J. Akhurst, J. Yan, and L. H. Schwartz. “CT-guided, automated detection of lung tumors on PET images.” Progress in Biomedical Optics and Imaging Proceedings of SPIE 6915 (June 2, 2008). https://doi.org/10.1117/12.770549.
Cui Y, Zhao B, Akhurst TJ, Yan J, Schwartz LH. CT-guided, automated detection of lung tumors on PET images. Progress in Biomedical Optics and Imaging Proceedings of SPIE. 2008 Jun 2;6915.
Cui, Y., et al. “CT-guided, automated detection of lung tumors on PET images.” Progress in Biomedical Optics and Imaging Proceedings of SPIE, vol. 6915, June 2008. Scopus, doi:10.1117/12.770549.
Cui Y, Zhao B, Akhurst TJ, Yan J, Schwartz LH. CT-guided, automated detection of lung tumors on PET images. Progress in Biomedical Optics and Imaging Proceedings of SPIE. 2008 Jun 2;6915.

Published In

Progress in Biomedical Optics and Imaging Proceedings of SPIE

DOI

ISSN

1605-7422

Publication Date

June 2, 2008

Volume

6915