Modulation of Xenogeneic T-cell Proliferation by B7 and mTOR Blockade of T Cells and Porcine Endothelial Cells.

Journal Article (Journal Article)

BACKGROUND: Activation of porcine endothelial cells (PECs) is the mechanistic centerpiece of xenograft rejection. This study sought to characterize the immuno-phenotype of human T cells in response to PECs and to explore the immuno-modulation of B7 and mammalian target of rapamycin blockade of T cells and/or PECs during xeno-responses. METHODS: Rapid memory T-cell (TM) responses to PECs were assessed by an intracellular cytokine staining. T-cell proliferation to PEC with or without belatacept or rapamycin was evaluated by a mixed lymphocyte-endothelial cell reaction (MLER). Additionally, rapamycin-pretreated PECs were used in MLER. Cell phenotypes were analyzed by flow cytometry. RESULTS: Tumor necrosis factor-α/interferon-γ producers were detected in CD8+ cells stimulated by human endothelium but not PECs. MLER showed proliferation of CD4+ and CD8+ cells with predominantly memory subsets. Purified memory and naive cells proliferated following PEC stimulation with an increased frequency of TM in PEC-stimulated naive cells. Proliferating cells upregulated programmed cell death-1 (PD-1) and CD2 expression. Belatacept partially inhibited T-cell proliferation with reduced CD2 expression and frequency of the CD8+CD2highCD28- subset. Rapamycin dramatically inhibited PEC-induced T-cell proliferation, and rapamycin-preconditioned PECs failed to induce T-cell proliferation. PD-1 blockade did not restore T-cell proliferation to rapamycin-preconditioned PECs. CONCLUSIONS: Humans lack rapid TM-mediated responses to PECs but induce T-cell proliferative responses characterized largely as TM with increasing CD2 and PD-1 expression. B7-CD28 and mammalian target of rapamycin blockade of T cells exhibit dramatic inhibitory effects in altering xeno-proliferating cells. Rapamycin alters PEC xeno-immunogenicity leading to inhibition of xeno-specific T-cell proliferation independent of PD-1-PD ligand interaction.

Full Text

Duke Authors

Cited Authors

  • Li, S; Xu, H; Kirk, AD

Published Date

  • May 1, 2022

Published In

Volume / Issue

  • 106 / 5

Start / End Page

  • 950 - 962

PubMed ID

  • 34387242

Pubmed Central ID

  • PMC8850983

Electronic International Standard Serial Number (EISSN)

  • 1534-6080

Digital Object Identifier (DOI)

  • 10.1097/TP.0000000000003920

Language

  • eng

Conference Location

  • United States