Gene expression profile in human trabecular meshwork from patients with primary open-angle glaucoma.
Journal Article (Journal Article)
PURPOSE: To identify the specific genes in human trabecular meshwork (TM) related to POAG. METHODS: Primary open-angle glaucoma TM specimens were obtained from routine trabeculectomy surgery. Nonglaucomatous control TM specimens were dissected from donor eyes using the same approach as a standard trabeculectomy. All cases were screened for myocilin (MYOC) mutations. Total RNA was extracted, labeled, and hybridized to Illumina HumanWG-6 BeadChips. Expression data were normalized and analyzed using the R package limma in Bioconductor. Pathway analyses were performed using DAVID Bioinformatics Resources. RESULTS: Our study included surgical TM specimens from 15 cases and 13 controls. One case was identified with a heterozygous Q368X MYOC mutation. If TMs were available from both eyes in an individual, the expression data were combined for analysis. The following three comparisons were performed for differential analyses: (1) MYOC POAG case versus 14 non-MYOC POAG cases, (2) MYOC POAG case versus 13 controls, and (3) 14 non-MYOC POAG cases versus 13 controls. Limited by one MYOC case in comparisons 1 and 2, expression changes were reported comparing the fold changes but without P values. Comparison 3 identified 483 genes, including 36 components of TM exosomes. Gene ontology analysis identified several enriched functional clusters, including cell adhesion, extracellular matrix, and secretion. CONCLUSIONS: This is the largest TM expression study of POAG cases and controls performed to date and represents the first report of TM expression in a patient having POAG with a Q368X MYOC mutation. Our data suggest the potential role of endocytic and exosome pathways in the pathogenesis of POAG.
Full Text
Duke Authors
Cited Authors
- Liu, Y; Allingham, RR; Qin, X; Layfield, D; Dellinger, AE; Gibson, J; Wheeler, J; Ashley-Koch, AE; Stamer, WD; Hauser, MA
Published Date
- September 27, 2013
Published In
Volume / Issue
- 54 / 9
Start / End Page
- 6382 - 6389
PubMed ID
- 24003086
Pubmed Central ID
- PMC3787658
Electronic International Standard Serial Number (EISSN)
- 1552-5783
Digital Object Identifier (DOI)
- 10.1167/iovs.13-12128
Language
- eng
Conference Location
- United States