Skip to main content

Systematic identification of signaling pathways with potential to confer anticancer drug resistance.

Publication ,  Journal Article
Martz, CA; Ottina, KA; Singleton, KR; Jasper, JS; Wardell, SE; Peraza-Penton, A; Anderson, GR; Winter, PS; Wang, T; Alley, HM; Kwong, LN ...
Published in: Sci Signal
December 23, 2014

Cancer cells can activate diverse signaling pathways to evade the cytotoxic action of drugs. We created and screened a library of barcoded pathway-activating mutant complementary DNAs to identify those that enhanced the survival of cancer cells in the presence of 13 clinically relevant, targeted therapies. We found that activation of the RAS-MAPK (mitogen-activated protein kinase), Notch1, PI3K (phosphoinositide 3-kinase)-mTOR (mechanistic target of rapamycin), and ER (estrogen receptor) signaling pathways often conferred resistance to this selection of drugs. Activation of the Notch1 pathway promoted acquired resistance to tamoxifen (an ER-targeted therapy) in serially passaged breast cancer xenografts in mice, and treating mice with a γ-secretase inhibitor to inhibit Notch signaling restored tamoxifen sensitivity. Markers of Notch1 activity in tumor tissue correlated with resistance to tamoxifen in breast cancer patients. Similarly, activation of Notch1 signaling promoted acquired resistance to MAPK inhibitors in BRAF(V600E) melanoma cells in culture, and the abundance of Notch1 pathway markers was increased in tumors from a subset of melanoma patients. Thus, Notch1 signaling may be a therapeutic target in some drug-resistant breast cancers and melanomas. Additionally, multiple resistance pathways were activated in melanoma cell lines with intrinsic resistance to MAPK inhibitors, and simultaneous inhibition of these pathways synergistically induced drug sensitivity. These data illustrate the potential for systematic identification of the signaling pathways controlling drug resistance that could inform clinical strategies and drug development for multiple types of cancer. This approach may also be used to advance clinical options in other disease contexts.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Sci Signal

DOI

EISSN

1937-9145

Publication Date

December 23, 2014

Volume

7

Issue

357

Start / End Page

ra121

Location

United States

Related Subject Headings

  • Xenograft Model Antitumor Assays
  • Neoplasm Proteins
  • Mice, Nude
  • Mice
  • Melanoma
  • MAP Kinase Signaling System
  • Humans
  • Female
  • Drug Resistance, Neoplasm
  • Cell Line, Tumor
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Martz, C. A., Ottina, K. A., Singleton, K. R., Jasper, J. S., Wardell, S. E., Peraza-Penton, A., … Wood, K. C. (2014). Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Sci Signal, 7(357), ra121. https://doi.org/10.1126/scisignal.aaa1877
Martz, Colin A., Kathleen A. Ottina, Katherine R. Singleton, Jeff S. Jasper, Suzanne E. Wardell, Ashley Peraza-Penton, Gray R. Anderson, et al. “Systematic identification of signaling pathways with potential to confer anticancer drug resistance.Sci Signal 7, no. 357 (December 23, 2014): ra121. https://doi.org/10.1126/scisignal.aaa1877.
Martz CA, Ottina KA, Singleton KR, Jasper JS, Wardell SE, Peraza-Penton A, et al. Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Sci Signal. 2014 Dec 23;7(357):ra121.
Martz, Colin A., et al. “Systematic identification of signaling pathways with potential to confer anticancer drug resistance.Sci Signal, vol. 7, no. 357, Dec. 2014, p. ra121. Pubmed, doi:10.1126/scisignal.aaa1877.
Martz CA, Ottina KA, Singleton KR, Jasper JS, Wardell SE, Peraza-Penton A, Anderson GR, Winter PS, Wang T, Alley HM, Kwong LN, Cooper ZA, Tetzlaff M, Chen P-L, Rathmell JC, Flaherty KT, Wargo JA, McDonnell DP, Sabatini DM, Wood KC. Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Sci Signal. 2014 Dec 23;7(357):ra121.

Published In

Sci Signal

DOI

EISSN

1937-9145

Publication Date

December 23, 2014

Volume

7

Issue

357

Start / End Page

ra121

Location

United States

Related Subject Headings

  • Xenograft Model Antitumor Assays
  • Neoplasm Proteins
  • Mice, Nude
  • Mice
  • Melanoma
  • MAP Kinase Signaling System
  • Humans
  • Female
  • Drug Resistance, Neoplasm
  • Cell Line, Tumor