Protein aggregation behavior regulates cyclin transcript localization and cell-cycle control.
Little is known about the active positioning of transcripts outside of embryogenesis or highly polarized cells. We show here that a specific G1 cyclin transcript is highly clustered in the cytoplasm of large multinucleate cells. This heterogeneous cyclin transcript localization results from aggregation of an RNA-binding protein, and deletion of a polyglutamine stretch in this protein results in random transcript localization. These multinucleate cells are remarkable in that nuclei cycle asynchronously despite sharing a common cytoplasm. Notably, randomization of cyclin transcript localization significantly diminishes nucleus-to-nucleus differences in the number of mRNAs and synchronizes cell-cycle timing. Thus, nonrandom cyclin transcript localization is important for cell-cycle timing control and arises due to polyQ-dependent behavior of an RNA-binding protein. There is a widespread association between polyQ expansions and RNA-binding motifs, suggesting that this is a broadly exploited mechanism to produce spatially variable transcripts and heterogeneous cell behaviors. PAPERCLIP:
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Transcriptional Activation
- RNA-Binding Proteins
- RNA, Messenger
- Gene Expression Regulation, Fungal
- G1 Phase
- Fungal Proteins
- Eremothecium
- Developmental Biology
- Cytoplasm
- Cyclins
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Transcriptional Activation
- RNA-Binding Proteins
- RNA, Messenger
- Gene Expression Regulation, Fungal
- G1 Phase
- Fungal Proteins
- Eremothecium
- Developmental Biology
- Cytoplasm
- Cyclins