Skip to main content

Neuroendocrine Differentiation in Prostate Cancer Requires ASCL1.

Publication ,  Chapter
Rodarte, KE; Nir Heyman, S; Guo, L; Flores, L; Savage, TK; Villarreal, J; Deng, S; Xu, L; Shah, RB; Oliver, TG; Johnson, JE
November 4, 2024

Most patients with prostate adenocarcinoma develop resistance to therapies targeting the androgen receptor (AR). Consequently, a portion of these patients develop AR-independent neuroendocrine (NE) prostate cancer (NEPC), a rapidly progressing cancer with limited therapies and poor survival outcomes. Current research to understand the progression to NEPC suggests a model of lineage plasticity whereby AR-dependent luminal-like tumors progress toward an AR-independent NEPC state. Genetic analysis of human NEPC identified frequent loss of RB1 and TP53, and the loss of both genes in experimental models mediates the transition to a NE lineage. Transcriptomics studies have shown that lineage transcription factors ASCL1 and NEUROD1 are present in NEPC. In this study, we modeled the progression of prostate adenocarcinoma to NEPC by establishing prostate organoids and subsequently generating subcutaneous allograft tumors from genetically engineered mouse models harboring Cre-induced loss of Rb1 and Trp53 with Myc overexpression (RPM). These tumors were heterogeneous and displayed adenocarcinoma, squamous, and NE features. ASCL1 and NEUROD1 were expressed within NE-defined regions, with ASCL1 being predominant. Genetic loss of Ascl1 in this model did not decrease tumor incidence, growth, or metastasis; however, there was a notable decrease in NE identity and an increase in basal-like identity. This study provides an in vivo model to study progression to NEPC and establishes the requirement for ASCL1 in driving NE differentiation in prostate cancer. Significance: Modeling lineage transitions in prostate cancer and testing dependencies of lineage transcription factors have therapeutic implications, given the emergence of treatment-resistant, aggressive forms of neuroendocrine prostate cancer. See related commentary by McQuillen and Brady, p. 3499.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

DOI

Publication Date

November 4, 2024

Volume

84

Start / End Page

3522 / 3537

Related Subject Headings

  • Tumor Suppressor Protein p53
  • Prostatic Neoplasms
  • Organoids
  • Oncology & Carcinogenesis
  • Neuroendocrine Tumors
  • Mice, Transgenic
  • Mice
  • Male
  • Humans
  • Gene Expression Regulation, Neoplastic
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Rodarte, K. E., Nir Heyman, S., Guo, L., Flores, L., Savage, T. K., Villarreal, J., … Johnson, J. E. (2024). Neuroendocrine Differentiation in Prostate Cancer Requires ASCL1. (Vol. 84, pp. 3522–3537). https://doi.org/10.1158/0008-5472.CAN-24-1388
Rodarte, Kathia E., Shaked Nir Heyman, Lei Guo, Lydia Flores, Trisha K. Savage, Juan Villarreal, Su Deng, et al. “Neuroendocrine Differentiation in Prostate Cancer Requires ASCL1.,” 84:3522–37, 2024. https://doi.org/10.1158/0008-5472.CAN-24-1388.
Rodarte KE, Nir Heyman S, Guo L, Flores L, Savage TK, Villarreal J, et al. Neuroendocrine Differentiation in Prostate Cancer Requires ASCL1. In 2024. p. 3522–37.
Rodarte, Kathia E., et al. Neuroendocrine Differentiation in Prostate Cancer Requires ASCL1. Vol. 84, 2024, pp. 3522–37. Pubmed, doi:10.1158/0008-5472.CAN-24-1388.
Rodarte KE, Nir Heyman S, Guo L, Flores L, Savage TK, Villarreal J, Deng S, Xu L, Shah RB, Oliver TG, Johnson JE. Neuroendocrine Differentiation in Prostate Cancer Requires ASCL1. 2024. p. 3522–3537.

DOI

Publication Date

November 4, 2024

Volume

84

Start / End Page

3522 / 3537

Related Subject Headings

  • Tumor Suppressor Protein p53
  • Prostatic Neoplasms
  • Organoids
  • Oncology & Carcinogenesis
  • Neuroendocrine Tumors
  • Mice, Transgenic
  • Mice
  • Male
  • Humans
  • Gene Expression Regulation, Neoplastic