Skip to main content
Journal cover image

Leveraging population information in family-based rare variant association analyses of quantitative traits.

Publication ,  Journal Article
Jiang, Y; Ji, Y; Sibley, AB; Li, Y-J; Allen, AS
Published in: Genet Epidemiol
February 2017

Confounding due to population substructure is always a concern in genetic association studies. Although methods have been proposed to adjust for population stratification in the context of common variation, it is unclear how well these approaches will work when interrogating rare variation. Family-based association tests can be constructed that are robust to population stratification. For example, when considering a quantitative trait, a linear model can be used that decomposes genetic effects into between- and within-family components and a test of the within-family component is robust to population stratification. However, this within-family test ignores between-family information potentially leading to a loss of power. Here, we propose a family-based two-stage rare-variant test for quantitative traits. We first construct a weight for each variant within a gene, or other genetic unit, based on score tests of between-family effect parameters. These weights are then used to combine variants using score tests of within-family effect parameters. Because the between-family and within-family tests are orthogonal under the null hypothesis, this two-stage approach can increase power while still maintaining validity. Using simulation, we show that this two-stage test can significantly improve power while correctly maintaining type I error. We further show that the two-stage approach maintains the robustness to population stratification of the within-family test and we illustrate this using simulations reflecting samples composed of continental and closely related subpopulations.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Genet Epidemiol

DOI

EISSN

1098-2272

Publication Date

February 2017

Volume

41

Issue

2

Start / End Page

98 / 107

Location

United States

Related Subject Headings

  • Quantitative Trait Loci
  • Phenotype
  • Models, Genetic
  • Humans
  • Genetics, Population
  • Genetic Variation
  • Genetic Predisposition to Disease
  • Genetic Association Studies
  • Family
  • Epidemiology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Jiang, Y., Ji, Y., Sibley, A. B., Li, Y.-J., & Allen, A. S. (2017). Leveraging population information in family-based rare variant association analyses of quantitative traits. Genet Epidemiol, 41(2), 98–107. https://doi.org/10.1002/gepi.22022
Jiang, Yu, Yunqi Ji, Alexander B. Sibley, Yi-Ju Li, and Andrew S. Allen. “Leveraging population information in family-based rare variant association analyses of quantitative traits.Genet Epidemiol 41, no. 2 (February 2017): 98–107. https://doi.org/10.1002/gepi.22022.
Jiang Y, Ji Y, Sibley AB, Li Y-J, Allen AS. Leveraging population information in family-based rare variant association analyses of quantitative traits. Genet Epidemiol. 2017 Feb;41(2):98–107.
Jiang, Yu, et al. “Leveraging population information in family-based rare variant association analyses of quantitative traits.Genet Epidemiol, vol. 41, no. 2, Feb. 2017, pp. 98–107. Pubmed, doi:10.1002/gepi.22022.
Jiang Y, Ji Y, Sibley AB, Li Y-J, Allen AS. Leveraging population information in family-based rare variant association analyses of quantitative traits. Genet Epidemiol. 2017 Feb;41(2):98–107.
Journal cover image

Published In

Genet Epidemiol

DOI

EISSN

1098-2272

Publication Date

February 2017

Volume

41

Issue

2

Start / End Page

98 / 107

Location

United States

Related Subject Headings

  • Quantitative Trait Loci
  • Phenotype
  • Models, Genetic
  • Humans
  • Genetics, Population
  • Genetic Variation
  • Genetic Predisposition to Disease
  • Genetic Association Studies
  • Family
  • Epidemiology