
Bioinformatics strategy to advance the interpretation of Alzheimer's disease GWAS discoveries: The roads from association to causation.
INTRODUCTION: Genome-wide association studies (GWAS) discovered multiple late-onset Alzheimer's disease (LOAD)-associated SNPs and inferred the genes based on proximity; however, the actual causal genes are yet to be identified. METHODS: We defined LOAD-GWAS regions by the most significantly associated SNP ±0.5 Mb and developed a bioinformatics pipeline that uses and integrates chromatin state segmentation track to map active enhancers and virtual 4C software to visualize interactions between active enhancers and gene promoters. We augmented our pipeline with biomedical and functional information. RESULTS: We applied the bioinformatics pipeline using three ∼1 Mb LOAD-GWAS loci: BIN1, PICALM, CELF1. These loci contain 10-24 genes, an average of 106 active enhancers and 80 CTCF sites. Our strategy identified all genes corresponding to the promoters that interact with the active enhancer that is closest to the LOAD-GWAS-SNP and generated a shorter list of prioritized candidate LOAD genes (5-14/loci), feasible for post-GWAS investigations of causality. DISCUSSION: Interpretation of LOAD-GWAS discoveries requires the integration of brain-specific functional genomic data sets and information related to regulatory activity.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Polymorphism, Single Nucleotide
- Humans
- Geriatrics
- Genome-Wide Association Study
- Genetic Predisposition to Disease
- Computational Biology
- Alzheimer Disease
- 5202 Biological psychology
- 3209 Neurosciences
- 3202 Clinical sciences
Citation

Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Polymorphism, Single Nucleotide
- Humans
- Geriatrics
- Genome-Wide Association Study
- Genetic Predisposition to Disease
- Computational Biology
- Alzheimer Disease
- 5202 Biological psychology
- 3209 Neurosciences
- 3202 Clinical sciences