
Daily edge deformation prediction using an unsupervised convolutional neural network model for low dose prior contour based total variation CBCT reconstruction (PCTV-CNN).
PURPOSE: Previously we developed a PCTV method to enhance the edge sharpness for low-dose CBCT reconstruction. However, the iterative deformable registration method used for deforming edges from planning-CT to on-board CBCT is time-consuming and user-dependent. This study aims to automate and accelerate PCTV reconstruction by developing an unsupervised CNN model to bypass the conventional deformable registration. METHODS: The new method uses unsupervised CNN model for deformation prediction and PCTV reconstruction. An unsupervised CNN model with a u-net structure was used to predict deformation vector fields (DVF) to generate on-board contours for PCTV reconstruction. Paired 3D image volumes of prior CT and on-board CBCT are inputs and DVF are predicted without the need of ground truths. The model was initially trained on brain MRI images, and then fine-tuned using our lung SBRT data. This method was evaluated using lung SBRT patient data. In the intra-patient study, the first n-1 day's CBCTs are used for CNN training to predict nth day edge information (n = 2, 3, 4, 5). 45 half-fan projections covering 360˚ from nth day CBCT is used for reconstruction. In the inter-patient study, the 10 patient images including CT and first day's CBCT are used for training. Results from Edge-preserving (EPTV), PCTV and PCTV-CNN are compared. RESULTS: The cross-correlations of the predicted edge map and the ground truth were on average 0.88 for both intra-patient and inter-patient studies. PCTV-CNN achieved comparable image quality as PCTV while automating the registration process and reducing the registration time from 1-2 min to 1.4 s. CONCLUSION: It is feasible to use an unsupervised CNN to predict daily deformation of on-board edge information for PCTV based low-dose CBCT reconstruction. PCTV-CNN has a great potential for enhancing the edge sharpness with high efficiency for low-dose CBCT to improve the precision of on-board target localization and adaptive radiotherapy.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Location
Related Subject Headings
- 4003 Biomedical engineering
- 3206 Medical biotechnology
- 1004 Medical Biotechnology
- 0903 Biomedical Engineering
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Location
Related Subject Headings
- 4003 Biomedical engineering
- 3206 Medical biotechnology
- 1004 Medical Biotechnology
- 0903 Biomedical Engineering