Skip to main content
Journal cover image

Highly Distorted Chiral Two-Dimensional Tin Iodide Perovskites for Spin Polarized Charge Transport.

Publication ,  Journal Article
Lu, H; Xiao, C; Song, R; Li, T; Maughan, AE; Levin, A; Brunecky, R; Berry, JJ; Mitzi, DB; Blum, V; Beard, MC
Published in: Journal of the American Chemical Society
July 2020

Incorporating chiral organic molecules into organic/inorganic hybrid 2D metal-halide perovskites results in a novel family of chiral hybrid semiconductors with unique spin-dependent properties. The embedded chiral organic moieties induce a chiroptical response from the inorganic metal-halide sublattice. However, the structural interplay between the chiral organic molecules and the inorganic sublattice, as well as their synergic effect on the resulting electronic band structure need to be explored in a broader material scope. Here we present three new layered tin iodide perovskites templated by chiral (R/S-)methylbenzylammonium (R/S-MBA), i.e., (R-/S-MBA)2SnI4, and their racemic phase (rac-MBA)2SnI4. These MBA2SnI4 compounds exhibit the largest level of octahedral bond distortion compared to any other reported layered tin iodide perovskite. The incorporation of chiral MBA cations leads to circularly polarized absorption from the inorganic Sn-I sublattice, displaying chiroptical activity in the 300-500 nm wavelength range. The bandgap and chiroptical activity are modulated by alloying Sn with Pb, in the series of (MBA)2Pb1-xSnxI4. Finally, we show that vertical charge transport through oriented (R-/S-MBA)2SnI4 thin films is highly spin-dependent, arising from a chiral-induced spin selectivity (CISS) effect. We demonstrate a spin-polarization in the current-voltage characteristics as high as 94%. Our work shows the tremendous potential of these chiral hybrid semiconductors for controlling both spin and charge degrees of freedom.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of the American Chemical Society

DOI

EISSN

1520-5126

ISSN

0002-7863

Publication Date

July 2020

Volume

142

Issue

30

Start / End Page

13030 / 13040

Related Subject Headings

  • General Chemistry
  • 40 Engineering
  • 34 Chemical sciences
  • 03 Chemical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Lu, H., Xiao, C., Song, R., Li, T., Maughan, A. E., Levin, A., … Beard, M. C. (2020). Highly Distorted Chiral Two-Dimensional Tin Iodide Perovskites for Spin Polarized Charge Transport. Journal of the American Chemical Society, 142(30), 13030–13040. https://doi.org/10.1021/jacs.0c03899
Lu, Haipeng, Chuanxiao Xiao, Ruyi Song, Tianyang Li, Annalise E. Maughan, Andrew Levin, Roman Brunecky, et al. “Highly Distorted Chiral Two-Dimensional Tin Iodide Perovskites for Spin Polarized Charge Transport.Journal of the American Chemical Society 142, no. 30 (July 2020): 13030–40. https://doi.org/10.1021/jacs.0c03899.
Lu H, Xiao C, Song R, Li T, Maughan AE, Levin A, et al. Highly Distorted Chiral Two-Dimensional Tin Iodide Perovskites for Spin Polarized Charge Transport. Journal of the American Chemical Society. 2020 Jul;142(30):13030–40.
Lu, Haipeng, et al. “Highly Distorted Chiral Two-Dimensional Tin Iodide Perovskites for Spin Polarized Charge Transport.Journal of the American Chemical Society, vol. 142, no. 30, July 2020, pp. 13030–40. Epmc, doi:10.1021/jacs.0c03899.
Lu H, Xiao C, Song R, Li T, Maughan AE, Levin A, Brunecky R, Berry JJ, Mitzi DB, Blum V, Beard MC. Highly Distorted Chiral Two-Dimensional Tin Iodide Perovskites for Spin Polarized Charge Transport. Journal of the American Chemical Society. 2020 Jul;142(30):13030–13040.
Journal cover image

Published In

Journal of the American Chemical Society

DOI

EISSN

1520-5126

ISSN

0002-7863

Publication Date

July 2020

Volume

142

Issue

30

Start / End Page

13030 / 13040

Related Subject Headings

  • General Chemistry
  • 40 Engineering
  • 34 Chemical sciences
  • 03 Chemical Sciences