Skip to main content
Journal cover image

Molecular Analysis of pSK1 par: A Novel Plasmid Partitioning System Encoded by Staphylococcal Multiresistance Plasmids.

Publication ,  Journal Article
Chan, HY; Jensen, SO; LeBard, RJ; Figgett, WA; Lai, E; Simpson, AE; Brzoska, AJ; Davies, DS; Connolly, AM; Cordwell, SJ; Travis, BA; Firth, N ...
Published in: J Mol Biol
October 15, 2022

The segregation of prokaryotic plasmids typically requires a centromere-like site and two proteins, a centromere-binding protein (CBP) and an NTPase. By contrast, a single 245 residue Par protein mediates partition of the prototypical staphylococcal multiresistance plasmid pSK1 in the absence of an identifiable NTPase component. To gain insight into centromere binding by pSK1 Par and its segregation function we performed structural, biochemical and in vivo studies. Here we show that pSK1 Par binds a centromere consisting of seven repeat elements. We demonstrate this Par-centromere interaction also mediates Par autoregulation. To elucidate the Par centromere binding mechanism, we obtained a structure of the Par N-terminal DNA-binding domain bound to centromere DNA to 2.25 Å. The pSK1 Par structure, which harbors a winged-helix-turn-helix (wHTH), is distinct from other plasmid CBP structures but shows homology to the B. subtilis chromosome segregation protein, RacA. Biochemical studies suggest the region C-terminal to the Par wHTH forms coiled coils and mediates oligomerization. Fluorescence microscopy analyses show that pSK1 Par enhances the separation of plasmids from clusters, driving effective segregation upon cell division. Combined the data provide insight into the molecular properties of a single protein partition system.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

J Mol Biol

DOI

EISSN

1089-8638

Publication Date

October 15, 2022

Volume

434

Issue

19

Start / End Page

167770

Location

Netherlands

Related Subject Headings

  • Staphylococcus
  • Plasmids
  • Nucleoside-Triphosphatase
  • DNA
  • Chromosome Segregation
  • Centromere
  • Biochemistry & Molecular Biology
  • Bacterial Proteins
  • 3107 Microbiology
  • 3101 Biochemistry and cell biology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Chan, H. Y., Jensen, S. O., LeBard, R. J., Figgett, W. A., Lai, E., Simpson, A. E., … Schumacher, M. A. (2022). Molecular Analysis of pSK1 par: A Novel Plasmid Partitioning System Encoded by Staphylococcal Multiresistance Plasmids. J Mol Biol, 434(19), 167770. https://doi.org/10.1016/j.jmb.2022.167770
Chan, Helena Y., Slade O. Jensen, Rebecca J. LeBard, William A. Figgett, Evelyn Lai, Alice E. Simpson, Anthony J. Brzoska, et al. “Molecular Analysis of pSK1 par: A Novel Plasmid Partitioning System Encoded by Staphylococcal Multiresistance Plasmids.J Mol Biol 434, no. 19 (October 15, 2022): 167770. https://doi.org/10.1016/j.jmb.2022.167770.
Chan HY, Jensen SO, LeBard RJ, Figgett WA, Lai E, Simpson AE, et al. Molecular Analysis of pSK1 par: A Novel Plasmid Partitioning System Encoded by Staphylococcal Multiresistance Plasmids. J Mol Biol. 2022 Oct 15;434(19):167770.
Chan, Helena Y., et al. “Molecular Analysis of pSK1 par: A Novel Plasmid Partitioning System Encoded by Staphylococcal Multiresistance Plasmids.J Mol Biol, vol. 434, no. 19, Oct. 2022, p. 167770. Pubmed, doi:10.1016/j.jmb.2022.167770.
Chan HY, Jensen SO, LeBard RJ, Figgett WA, Lai E, Simpson AE, Brzoska AJ, Davies DS, Connolly AM, Cordwell SJ, Travis BA, Salinas R, Skurray RA, Firth N, Schumacher MA. Molecular Analysis of pSK1 par: A Novel Plasmid Partitioning System Encoded by Staphylococcal Multiresistance Plasmids. J Mol Biol. 2022 Oct 15;434(19):167770.
Journal cover image

Published In

J Mol Biol

DOI

EISSN

1089-8638

Publication Date

October 15, 2022

Volume

434

Issue

19

Start / End Page

167770

Location

Netherlands

Related Subject Headings

  • Staphylococcus
  • Plasmids
  • Nucleoside-Triphosphatase
  • DNA
  • Chromosome Segregation
  • Centromere
  • Biochemistry & Molecular Biology
  • Bacterial Proteins
  • 3107 Microbiology
  • 3101 Biochemistry and cell biology