
Wound repair in sea urchin larvae involves pigment cells and blastocoelar cells.
Sea urchin larvae spend weeks to months feeding on plankton prior to metamorphosis. When handled in the laboratory they are easily injured, suggesting that in the plankton they are injured with some frequency. Fortunately, larval wounds are repaired through an efficient wound response with mesenchymal pigment cells and blastocoelar cells assisting as the epithelium closes. An injury to the epithelium leads to an immediate calcium transient that rapidly spreads around the entire larva and is necessary for activating pigment cell migration toward the wound. If calcium transport is blocked, the pigment cells fail to activate and remain in place. When activated, pigment cells initiate directed migration to the wound site from distances of at least 85 μm. Upon arrival at the wound site they participate in an innate immune response. Blastocoelar cells are recruited to the injury site as well, though the calcium transient is unnecessary for activating these cells. At the wound site, blastocoelar cells participate in several functions including remodeling the skeleton if it protrudes through the epithelium.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Sea Urchins
- Metamorphosis, Biological
- Larva
- Epithelium
- Developmental Biology
- Calcium
- Animals
- 42 Health sciences
- 32 Biomedical and clinical sciences
- 31 Biological sciences
Citation

Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Sea Urchins
- Metamorphosis, Biological
- Larva
- Epithelium
- Developmental Biology
- Calcium
- Animals
- 42 Health sciences
- 32 Biomedical and clinical sciences
- 31 Biological sciences