Skip to main content

CBF-Beta Mitigates PI3K-Alpha-Specific Inhibitor Killing through PIM1 in PIK3CA-Mutant Gastric Cancer.

Publication ,  Journal Article
Stanland, LJ; Ang, HX; Hoj, JP; Chu, Y; Tan, P; Wood, KC; Luftig, MA
Published in: Mol Cancer Res
November 1, 2023

UNLABELLED: PIK3CA is the second most mutated gene in cancer leading to aberrant PI3K/AKT/mTOR signaling and increased translation, proliferation, and survival. Some 4%-25% of gastric cancers display activating PIK3CA mutations, including 80% of Epstein-Barr virus-associated GCs. Small molecules, including pan-PI3K and dual PI3K/mTOR inhibitors, have shown moderate success clinically, due to broad on-target/off-tissue effects. Thus, isoform-specific and mutant selective inhibitors have been of significant interest. However, drug resistance is a problem and has affected success of new drugs. There has been a concerted effort to define mechanisms of resistance and identify potent combinations in many tumor types, though gastric cancer is comparatively understudied. In this study, we identified modulators of the response to the PI3Kα-specific inhibitor, BYL719, in PIK3CA-mutant GCs. We found that loss of NEDD9 or inhibition of BCL-XL conferred hypersensitivity to BYL719, through increased cell-cycle arrest and cell death, respectively. In addition, we discovered that loss of CBFB conferred resistance to BYL719. CBFB loss led to upregulation of the protein kinase PIM1, which can phosphorylate and activate several overlapping downstream substrates as AKT thereby maintaining pathway activity in the presence of PI3Kα inhibition. The addition of a pan-PIM inhibitor re-sensitized resistant cells to BYL719. Our data provide clear mechanistic insights into PI3Kα inhibitor response in PIK3CA-mutant gastric tumors and can inform future work as mutant-selective inhibitors are in development for diverse tumor types. IMPLICATIONS: Loss of either NEDD9 or BCL-XL confers hypersensitivity to PI3K-alpha inhibition whereas loss of CBFB confers resistance through a CBFB/PIM1 signaling axis.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Mol Cancer Res

DOI

EISSN

1557-3125

Publication Date

November 1, 2023

Volume

21

Issue

11

Start / End Page

1148 / 1162

Location

United States

Related Subject Headings

  • Stomach Neoplasms
  • Proto-Oncogene Proteins c-akt
  • Protein Kinase Inhibitors
  • Phosphoinositide-3 Kinase Inhibitors
  • Phosphatidylinositol 3-Kinases
  • Oncology & Carcinogenesis
  • Mutation
  • Humans
  • Herpesvirus 4, Human
  • Epstein-Barr Virus Infections
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Stanland, L. J., Ang, H. X., Hoj, J. P., Chu, Y., Tan, P., Wood, K. C., & Luftig, M. A. (2023). CBF-Beta Mitigates PI3K-Alpha-Specific Inhibitor Killing through PIM1 in PIK3CA-Mutant Gastric Cancer. Mol Cancer Res, 21(11), 1148–1162. https://doi.org/10.1158/1541-7786.MCR-23-0034
Stanland, Lyla J., Hazel X. Ang, Jacob P. Hoj, Yunqiang Chu, Patrick Tan, Kris C. Wood, and Micah A. Luftig. “CBF-Beta Mitigates PI3K-Alpha-Specific Inhibitor Killing through PIM1 in PIK3CA-Mutant Gastric Cancer.Mol Cancer Res 21, no. 11 (November 1, 2023): 1148–62. https://doi.org/10.1158/1541-7786.MCR-23-0034.
Stanland LJ, Ang HX, Hoj JP, Chu Y, Tan P, Wood KC, et al. CBF-Beta Mitigates PI3K-Alpha-Specific Inhibitor Killing through PIM1 in PIK3CA-Mutant Gastric Cancer. Mol Cancer Res. 2023 Nov 1;21(11):1148–62.
Stanland, Lyla J., et al. “CBF-Beta Mitigates PI3K-Alpha-Specific Inhibitor Killing through PIM1 in PIK3CA-Mutant Gastric Cancer.Mol Cancer Res, vol. 21, no. 11, Nov. 2023, pp. 1148–62. Pubmed, doi:10.1158/1541-7786.MCR-23-0034.
Stanland LJ, Ang HX, Hoj JP, Chu Y, Tan P, Wood KC, Luftig MA. CBF-Beta Mitigates PI3K-Alpha-Specific Inhibitor Killing through PIM1 in PIK3CA-Mutant Gastric Cancer. Mol Cancer Res. 2023 Nov 1;21(11):1148–1162.

Published In

Mol Cancer Res

DOI

EISSN

1557-3125

Publication Date

November 1, 2023

Volume

21

Issue

11

Start / End Page

1148 / 1162

Location

United States

Related Subject Headings

  • Stomach Neoplasms
  • Proto-Oncogene Proteins c-akt
  • Protein Kinase Inhibitors
  • Phosphoinositide-3 Kinase Inhibitors
  • Phosphatidylinositol 3-Kinases
  • Oncology & Carcinogenesis
  • Mutation
  • Humans
  • Herpesvirus 4, Human
  • Epstein-Barr Virus Infections