Three-dimensional super-resolution passive cavitation mapping in laser lithotripsy.
Kidney stone disease is a major public health issue. By breaking stones with repeated laser irradiation, laser lithotripsy (LL) has become the main treatment for kidney stone disease. Laser-induced cavitation is closely associated with the stone damage in LL. Monitoring the cavitation activities during LL is thus crucial to optimizing the stone damage and maximizing LL efficiency. In this study, we have developed three-dimensional super-resolution passive cavitation mapping (3D-SRPCM), in which the cavitation bubble positions can be localized with an accuracy of 40 μm, which is 1/10th of the acoustic diffraction limit. Moreover, the 3D-SRPCM reconstruction speed has been improved by 300 times by adopting a GPU-based sparse-matrix beamforming approach. Using 3D-SRPCM, we studied LL-induced cavitation activities on BegoStones, both in free space of water and confined space of a kidney phantom. The dose-dependence analysis provided by 3D-SRPCM revealed that accumulated impact pressure on the stone surface has the highest correlation with the stone damage. By providing high-resolution cavitation mapping during LL treatment, we expect that 3D-SRPCM may become a powerful tool to improve the clinical LL efficiency and patient outcome.
Duke Scholars
Published In
DOI
EISSN
Publication Date
Volume
Location
Related Subject Headings
- Acoustics
- 51 Physical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
Citation
Published In
DOI
EISSN
Publication Date
Volume
Location
Related Subject Headings
- Acoustics
- 51 Physical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences