
TRPC3 channels confer cellular memory of recent neuromuscular activity.
Skeletal muscle adapts to different patterns of motor nerve activity by alterations in gene expression that match specialized properties of contraction, metabolism, and muscle mass to changing work demands (muscle plasticity). Calcineurin, a calcium/calmodulin-dependent, serine-threonine protein phosphatase, has been shown to control programs of gene expression in skeletal muscles, as in other cell types, through the transcription factor nuclear factor of activated T cells (NFAT). This study provides evidence that the function of NFAT as a transcriptional activator is regulated by neuromuscular stimulation in muscles of intact animals and that calcium influx from the transient receptor potential (TRPC3) channel is an important determinant of NFAT activity. Expression of TRPC3 channels in skeletal myocytes is up-regulated by neuromuscular activity in a calcineurin-dependent manner. These data suggest a mechanism for cellular memory in skeletal muscles whereby repeated bouts of contractile activity drive progressively greater remodeling events.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Transcription Factors
- TRPC Cation Channels
- Promoter Regions, Genetic
- Phosphoproteins
- Nuclear Proteins
- Neuromuscular Junction
- NFATC Transcription Factors
- Muscle, Skeletal
- Muscle Proteins
- Muscle Contraction
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Transcription Factors
- TRPC Cation Channels
- Promoter Regions, Genetic
- Phosphoproteins
- Nuclear Proteins
- Neuromuscular Junction
- NFATC Transcription Factors
- Muscle, Skeletal
- Muscle Proteins
- Muscle Contraction