Skip to main content

Lipid-induced metabolic dysfunction in skeletal muscle.

Publication ,  Journal Article
Muoio, DM; Koves, TR
Published in: Novartis Found Symp
2007

Insulin resistance is a hallmark of type 2 diabetes and commonly observed in other energy-stressed settings such as obesity, starvation, inactivity and ageing. Dyslipidaemia and 'lipotoxicity'--tissue accumulation of lipid metabolites-are increasingly recognized as important drivers of insulin resistant states. Mounting evidence suggests that lipid-induced metabolic dysfunction in skeletal muscle is mediated in large part by stress-activated serine kinases that interfere with insulin signal transduction. However, the metabolic and molecular events that connect lipid oversupply to stress kinase activation and glucose intolerance are as yet unclear. Application of transcriptomics and targeted mass spectrometry-based metabolomics tools has led to our finding that insulin resistance is a condition in which muscle mitochondria are persistently burdened with a heavy lipid load. As a result, high rates of beta-oxidation outpace metabolic flux through the TCA cycle, leading to accumulation of incompletely oxidized acyl-carnitine intermediates. In contrast, exercise training enhances mitochondrial performance, favouring tighter coupling between beta-oxidation and the TCA cycle, and concomitantly restores insulin sensitivity in animals fed a chronic high fat diet. The exercise-activated transcriptional co-activator, PGC1alpha, plays a key role in co-ordinating metabolic flux through these two intersecting metabolic pathways, and its suppression by overfeeding may contribute to obesity-associated mitochondrial dysfunction. Our emerging model predicts that muscle insulin resistance arises from mitochondrial lipid stress and a resultant disconnect between beta-oxidation and TCA cycle activity. Understanding this 'disconnect' and its molecular basis may lead to new therapeutic targets for combating metabolic disease.

Duke Scholars

Published In

Novartis Found Symp

DOI

ISSN

1528-2511

Publication Date

2007

Volume

286

Start / End Page

24 / 38

Location

England

Related Subject Headings

  • Oxidation-Reduction
  • Obesity
  • Muscle, Skeletal
  • Models, Biological
  • Mitochondria
  • Lipid Metabolism
  • Insulin Resistance
  • Humans
  • Diabetes Mellitus, Type 2
  • Animals
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Muoio, D. M., & Koves, T. R. (2007). Lipid-induced metabolic dysfunction in skeletal muscle. Novartis Found Symp, 286, 24–38. https://doi.org/10.1002/9780470985571.ch4
Muoio, Deborah M., and Timothy R. Koves. “Lipid-induced metabolic dysfunction in skeletal muscle.Novartis Found Symp 286 (2007): 24–38. https://doi.org/10.1002/9780470985571.ch4.
Muoio DM, Koves TR. Lipid-induced metabolic dysfunction in skeletal muscle. Novartis Found Symp. 2007;286:24–38.
Muoio, Deborah M., and Timothy R. Koves. “Lipid-induced metabolic dysfunction in skeletal muscle.Novartis Found Symp, vol. 286, 2007, pp. 24–38. Pubmed, doi:10.1002/9780470985571.ch4.
Muoio DM, Koves TR. Lipid-induced metabolic dysfunction in skeletal muscle. Novartis Found Symp. 2007;286:24–38.

Published In

Novartis Found Symp

DOI

ISSN

1528-2511

Publication Date

2007

Volume

286

Start / End Page

24 / 38

Location

England

Related Subject Headings

  • Oxidation-Reduction
  • Obesity
  • Muscle, Skeletal
  • Models, Biological
  • Mitochondria
  • Lipid Metabolism
  • Insulin Resistance
  • Humans
  • Diabetes Mellitus, Type 2
  • Animals