Skip to main content
Journal cover image

Endogenous swimming rhythms of blue crab, Callinectes sapidus, megalopae: Effects of offshore and estuarine cues

Publication ,  Journal Article
Forward, RB; Swanson, J; Tankersely, RA; Welch, JM
Published in: Marine Biology
March 1, 1997

Larvae of the blue crab Callinectes sapidus Rathbun develop on the continental shelf. The postlarval stage (megalopa) occurs near the surface and is transported shoreward by wind-driven surface currents. It then uses selective tidal stream transport for migration up an estuary. Endogenous swimming rhythms were measured under constant dark conditions in the laboratory in megalopae collected from the Newport River Estuary (North Carolina), the Delaware Bay, and offshore from the Newport River Estuary. Megalopae from all areas had a similar circadian activity rhythm, in which they swam during the time of the day phase in the field and were inactive at night. This rhythm predicts the presence of a reverse, diel, vertical-migration pattern offshore which would contribute to the location of megalopae near the surface during the day. The rhythm lacks obvious ecological significance in estuaries because it does not contribute to selective tidal stream transport and would increase vulnerability to visual predators during the day. Attempts to entrain a circatidal rhythm in swimming by cyclic and step changes in salinity were unsuccessful, as the circadian rhythm persisted. The rhythm also continued in the presence of the eelgrass Zostera marina, which is a site of settlement and metamorphosis in the field. Thus, megalopae enter estuaries with a solar day rhythm in activity. This rhythm, however, is not expressed, because light inhibits swimming during the day upon exposure to estuarine water. Since this light inhibition is removed in offshore waters, the rhythm would be expressed if, after entering an estuary, megalopae were transported back to offshore areas.

Duke Scholars

Published In

Marine Biology

DOI

ISSN

0025-3162

Publication Date

March 1, 1997

Volume

127

Issue

4

Start / End Page

621 / 628

Related Subject Headings

  • Marine Biology & Hydrobiology
  • 3109 Zoology
  • 3103 Ecology
  • 07 Agricultural and Veterinary Sciences
  • 06 Biological Sciences
  • 05 Environmental Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Forward, R. B., Swanson, J., Tankersely, R. A., & Welch, J. M. (1997). Endogenous swimming rhythms of blue crab, Callinectes sapidus, megalopae: Effects of offshore and estuarine cues. Marine Biology, 127(4), 621–628. https://doi.org/10.1007/s002270050052
Forward, R. B., J. Swanson, R. A. Tankersely, and J. M. Welch. “Endogenous swimming rhythms of blue crab, Callinectes sapidus, megalopae: Effects of offshore and estuarine cues.” Marine Biology 127, no. 4 (March 1, 1997): 621–28. https://doi.org/10.1007/s002270050052.
Forward RB, Swanson J, Tankersely RA, Welch JM. Endogenous swimming rhythms of blue crab, Callinectes sapidus, megalopae: Effects of offshore and estuarine cues. Marine Biology. 1997 Mar 1;127(4):621–8.
Forward, R. B., et al. “Endogenous swimming rhythms of blue crab, Callinectes sapidus, megalopae: Effects of offshore and estuarine cues.” Marine Biology, vol. 127, no. 4, Mar. 1997, pp. 621–28. Scopus, doi:10.1007/s002270050052.
Forward RB, Swanson J, Tankersely RA, Welch JM. Endogenous swimming rhythms of blue crab, Callinectes sapidus, megalopae: Effects of offshore and estuarine cues. Marine Biology. 1997 Mar 1;127(4):621–628.
Journal cover image

Published In

Marine Biology

DOI

ISSN

0025-3162

Publication Date

March 1, 1997

Volume

127

Issue

4

Start / End Page

621 / 628

Related Subject Headings

  • Marine Biology & Hydrobiology
  • 3109 Zoology
  • 3103 Ecology
  • 07 Agricultural and Veterinary Sciences
  • 06 Biological Sciences
  • 05 Environmental Sciences