
Modifications of the EM algorithm for survival influenced by an unobserved stochastic process
Let Y=(Yt)t≥0) be an unobserved random process which influences the distribution of a random variable T which can be interpreted as the time to failure. When a conditional hazard rate corresponding to T is a quadratic function of covariates, Y, the marginal survival function may be represented by the first two moments of the conditional distribution of Y among survivors. Such a representation may not have an explicit parametric form. This makes it difficult to use standard maximum likelihood procedures to estimate parameters - especially for censored survival data. In this paper a generalization of the EM algorithm for survival problems with unobserved, stochastically changing covariates is suggested. It is shown that, for a general model of the stochastic failure model, the smoothing estimates of the first two moments of Y are of a specific form which facilitates the EM type calculations. Properties of the algorithm are discussed. © 1994.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 4901 Applied mathematics
- 1502 Banking, Finance and Investment
- 0104 Statistics
- 0102 Applied Mathematics
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 4901 Applied mathematics
- 1502 Banking, Finance and Investment
- 0104 Statistics
- 0102 Applied Mathematics