Skip to main content

The effect of scatter correction on dual energy micro-CT

Publication ,  Conference
Clark, D; Johnston, SM; Johnson, GA; Badea, CT
Published in: Progress in Biomedical Optics and Imaging - Proceedings of SPIE
June 3, 2013

Dual energy (DE) CT imaging is expected to play a major role in the diagnostic arena as it provides a quantitative decomposition of basis materials, opening the door for new clinical applications without significantly increasing dose to the patient. DE-CT provides a particularly unique opportunity in preclinical CT where new elemental contrast agents are providing novel approaches for quantitative tissue characterization. We have implemented DE-CT imaging with a preclinical dual source micro-CT scanner. With this configuration, both forward and cross-scatter can substantially degrade image quality. This work investigated the effect of scatter correction on the accuracy of post-reconstruction iodine and calcium decomposition. Scatter has been estimated using a lead beam stop technique. Our approach involves noise reduction in the scatter corrected images using bilateral filtering. The scatter correction has been quantitatively evaluated using phantom experiments and in vivo cancer imaging. As shown by our measurements, the dual source scanning is affected more by the cross-scatter from the high energy to the low energy imaging chain. The scatter correction reduced the presence of cupping artifacts and increased both the accuracy and precision of dual energy decompositions of calcium and iodine. On average, the root mean square errors in retrieving true iodine and calcium concentrations via dual energy were reduced by 32%. As a result of scatter corrections, we expect more accurate quantification of important vascular biomarkers such as fractional blood volume and vascular permeability in preclinical cancer studies. © 2013 SPIE.

Duke Scholars

Published In

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

DOI

ISSN

1605-7422

Publication Date

June 3, 2013

Volume

8668
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Clark, D., Johnston, S. M., Johnson, G. A., & Badea, C. T. (2013). The effect of scatter correction on dual energy micro-CT. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE (Vol. 8668). https://doi.org/10.1117/12.2006904
Clark, D., S. M. Johnston, G. A. Johnson, and C. T. Badea. “The effect of scatter correction on dual energy micro-CT.” In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, Vol. 8668, 2013. https://doi.org/10.1117/12.2006904.
Clark D, Johnston SM, Johnson GA, Badea CT. The effect of scatter correction on dual energy micro-CT. In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE. 2013.
Clark, D., et al. “The effect of scatter correction on dual energy micro-CT.” Progress in Biomedical Optics and Imaging - Proceedings of SPIE, vol. 8668, 2013. Scopus, doi:10.1117/12.2006904.
Clark D, Johnston SM, Johnson GA, Badea CT. The effect of scatter correction on dual energy micro-CT. Progress in Biomedical Optics and Imaging - Proceedings of SPIE. 2013.

Published In

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

DOI

ISSN

1605-7422

Publication Date

June 3, 2013

Volume

8668