Skip to main content

MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice.

Publication ,  Journal Article
Holbrook, MD; Blocker, SJ; Mowery, YM; Badea, A; Qi, Y; Xu, ES; Kirsch, DG; Johnson, GA; Badea, CT
Published in: Tomography
March 2020

Small-animal imaging is an essential tool that provides noninvasive, longitudinal insight into novel cancer therapies. However, considerable variability in image analysis techniques can lead to inconsistent results. We have developed quantitative imaging for application in the preclinical arm of a coclinical trial by using a genetically engineered mouse model of soft tissue sarcoma. Magnetic resonance imaging (MRI) images were acquired 1 day before and 1 week after radiation therapy. After the second MRI, the primary tumor was surgically removed by amputating the tumor-bearing hind limb, and mice were followed for up to 6 months. An automatic analysis pipeline was used for multicontrast MRI data using a convolutional neural network for tumor segmentation followed by radiomics analysis. We then calculated radiomics features for the tumor, the peritumoral area, and the 2 combined. The first radiomics analysis focused on features most indicative of radiation therapy effects; the second radiomics analysis looked for features that might predict primary tumor recurrence. The segmentation results indicated that Dice scores were similar when using multicontrast versus single T2-weighted data (0.863 vs 0.861). One week post RT, larger tumor volumes were measured, and radiomics analysis showed greater heterogeneity. In the tumor and peritumoral area, radiomics features were predictive of primary tumor recurrence (AUC: 0.79). We have created an image processing pipeline for high-throughput, reduced-bias segmentation of multiparametric tumor MRI data and radiomics analysis, to better our understanding of preclinical imaging and the insights it provides when studying new cancer therapies.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Tomography

DOI

EISSN

2379-139X

Publication Date

March 2020

Volume

6

Issue

1

Start / End Page

23 / 33

Location

Switzerland

Related Subject Headings

  • Soft Tissue Neoplasms
  • Sarcoma
  • Neoplasm Recurrence, Local
  • Mice
  • Magnetic Resonance Imaging
  • Deep Learning
  • Animals
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Holbrook, M. D., Blocker, S. J., Mowery, Y. M., Badea, A., Qi, Y., Xu, E. S., … Badea, C. T. (2020). MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice. Tomography, 6(1), 23–33. https://doi.org/10.18383/j.tom.2019.00021
Holbrook, M. D., S. J. Blocker, Y. M. Mowery, A. Badea, Y. Qi, E. S. Xu, D. G. Kirsch, G. A. Johnson, and C. T. Badea. “MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice.Tomography 6, no. 1 (March 2020): 23–33. https://doi.org/10.18383/j.tom.2019.00021.
Holbrook MD, Blocker SJ, Mowery YM, Badea A, Qi Y, Xu ES, et al. MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice. Tomography. 2020 Mar;6(1):23–33.
Holbrook, M. D., et al. “MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice.Tomography, vol. 6, no. 1, Mar. 2020, pp. 23–33. Pubmed, doi:10.18383/j.tom.2019.00021.
Holbrook MD, Blocker SJ, Mowery YM, Badea A, Qi Y, Xu ES, Kirsch DG, Johnson GA, Badea CT. MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice. Tomography. 2020 Mar;6(1):23–33.

Published In

Tomography

DOI

EISSN

2379-139X

Publication Date

March 2020

Volume

6

Issue

1

Start / End Page

23 / 33

Location

Switzerland

Related Subject Headings

  • Soft Tissue Neoplasms
  • Sarcoma
  • Neoplasm Recurrence, Local
  • Mice
  • Magnetic Resonance Imaging
  • Deep Learning
  • Animals