Skip to main content

Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors.

Publication ,  Journal Article
Crosby, EJ; Wei, J; Yang, XY; Lei, G; Wang, T; Liu, C-X; Agarwal, P; Korman, AJ; Morse, MA; Gouin, K; Knott, SRV; Lyerly, HK; Hartman, ZC
Published in: Oncoimmunology
2018

Triple-negative breast cancer (TNBC) is an aggressive and molecularly diverse breast cancer subtype typified by the presence of p53 mutations (∼80%), elevated immune gene signatures and neoantigen expression, as well as the presence of tumor infiltrating lymphocytes (TILs). As these factors are hypothesized to be strong immunologic prerequisites for the use of immune checkpoint blockade (ICB) antibodies, multiple clinical trials testing single ICBs have advanced to Phase III, with early indications of heterogeneous response rates of <20% to anti-PD1 and anti-PDL1 ICB. While promising, these modest response rates highlight the need for mechanistic studies to understand how different ICBs function, how their combination impacts functionality and efficacy, as well as what immunologic parameters predict efficacy to different ICBs regimens in TNBC. To address these issues, we tested anti-PD1 and anti-CTLA4 in multiple models of TNBC and found that their combination profoundly enhanced the efficacy of either treatment alone. We demonstrate that this efficacy is due to anti-CTLA4-driven expansion of an individually unique T-cell receptor (TCR) repertoire whose functionality is enhanced by both intratumoral Treg suppression and anti-PD1 blockade of tumor expressed PDL1. Notably, the individuality of the TCR repertoire was observed regardless of whether the tumor cells expressed a nonself antigen (ovalbumin) or if tumor-specific transgenic T-cells were transferred prior to sequencing. However, responsiveness was strongly correlated with systemic measures of tumor-specific T-cell and B-cell responses, which along with systemic assessment of TCR expansion, may serve as the most useful predictors for clinical responsiveness in future clinical trials of TNBC utilizing anti-PD1/anti-CTLA4 ICB.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Oncoimmunology

DOI

ISSN

2162-4011

Publication Date

2018

Volume

7

Issue

5

Start / End Page

e1421891

Location

United States

Related Subject Headings

  • 3211 Oncology and carcinogenesis
  • 3204 Immunology
  • 1112 Oncology and Carcinogenesis
  • 1107 Immunology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Crosby, E. J., Wei, J., Yang, X. Y., Lei, G., Wang, T., Liu, C.-X., … Hartman, Z. C. (2018). Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors. Oncoimmunology, 7(5), e1421891. https://doi.org/10.1080/2162402X.2017.1421891
Crosby, Erika J., Junping Wei, Xiao Yi Yang, Gangjun Lei, Tao Wang, Cong-Xiao Liu, Pankaj Agarwal, et al. “Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors.Oncoimmunology 7, no. 5 (2018): e1421891. https://doi.org/10.1080/2162402X.2017.1421891.
Crosby, Erika J., et al. “Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors.Oncoimmunology, vol. 7, no. 5, 2018, p. e1421891. Pubmed, doi:10.1080/2162402X.2017.1421891.
Crosby EJ, Wei J, Yang XY, Lei G, Wang T, Liu C-X, Agarwal P, Korman AJ, Morse MA, Gouin K, Knott SRV, Lyerly HK, Hartman ZC. Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors. Oncoimmunology. 2018;7(5):e1421891.

Published In

Oncoimmunology

DOI

ISSN

2162-4011

Publication Date

2018

Volume

7

Issue

5

Start / End Page

e1421891

Location

United States

Related Subject Headings

  • 3211 Oncology and carcinogenesis
  • 3204 Immunology
  • 1112 Oncology and Carcinogenesis
  • 1107 Immunology