
Real-time corneal segmentation and 3D needle tracking in intrasurgical OCT.
Ophthalmic procedures demand precise surgical instrument control in depth, yet standard operating microscopes supply limited depth perception. Current commercial microscope-integrated optical coherence tomography partially meets this need with manually-positioned cross-sectional images that offer qualitative estimates of depth. In this work, we present methods for automatic quantitative depth measurement using real-time, two-surface corneal segmentation and needle tracking in OCT volumes. We then demonstrate these methods for guidance of ex vivo deep anterior lamellar keratoplasty (DALK) needle insertions. Surgeons using the output of these methods improved their ability to reach a target depth, and decreased their incidence of corneal perforations, both with statistical significance. We believe these methods could increase the success rate of DALK and thereby improve patient outcomes.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4003 Biomedical engineering
- 3212 Ophthalmology and optometry
- 0912 Materials Engineering
- 0205 Optical Physics
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4003 Biomedical engineering
- 3212 Ophthalmology and optometry
- 0912 Materials Engineering
- 0205 Optical Physics