Nonclassical Monocytes Sense Hypoxia, Regulate Pulmonary Vascular Remodeling, and Promote Pulmonary Hypertension.
An increasing body of evidence suggests that bone marrow-derived myeloid cells play a critical role in the pathophysiology of pulmonary hypertension (PH). However, the true requirement for myeloid cells in PH development has not been demonstrated, and a specific disease-promoting myeloid cell population has not been identified. Using bone marrow chimeras, lineage labeling, and proliferation studies, we determined that, in murine hypoxia-induced PH, Ly6Clo nonclassical monocytes are recruited to small pulmonary arteries and differentiate into pulmonary interstitial macrophages. Accumulation of these nonclassical monocyte-derived pulmonary interstitial macrophages around pulmonary vasculature is associated with increased muscularization of small pulmonary arteries and disease severity. To determine if the sensing of hypoxia by nonclassical monocytes contributes to the development of PH, mice lacking expression of hypoxia-inducible factor-1α in the Ly6Clo monocyte lineage were exposed to hypoxia. In these mice, vascular remodeling and PH severity were significantly reduced. Transcriptome analyses suggest that the Ly6Clo monocyte lineage regulates PH through complement, phagocytosis, Ag presentation, and chemokine/cytokine pathways. Consistent with these murine findings, relative to controls, lungs from pulmonary arterial hypertension patients displayed a significant increase in the frequency of nonclassical monocytes. Taken together, these findings show that, in response to hypoxia, nonclassical monocytes in the lung sense hypoxia, infiltrate small pulmonary arteries, and promote vascular remodeling and development of PH. Our results demonstrate that myeloid cells, specifically cells of the nonclassical monocyte lineage, play a direct role in the pathogenesis of PH.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Vascular Remodeling
- Transplantation Chimera
- Pulmonary Artery
- Monocytes
- Mice, Transgenic
- Mice
- Male
- Macrophages, Alveolar
- Lung Transplantation
- Lung
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Vascular Remodeling
- Transplantation Chimera
- Pulmonary Artery
- Monocytes
- Mice, Transgenic
- Mice
- Male
- Macrophages, Alveolar
- Lung Transplantation
- Lung