Skip to main content
Journal cover image

Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro.

Publication ,  Journal Article
Gusa, A; Williams, JD; Cho, J-E; Averette, AF; Sun, S; Shouse, EM; Heitman, J; Alspaugh, JA; Jinks-Robertson, S
Published in: Proc Natl Acad Sci U S A
May 5, 2020

When transitioning from the environment, pathogenic microorganisms must adapt rapidly to survive in hostile host conditions. This is especially true for environmental fungi that cause opportunistic infections in immunocompromised patients since these microbes are not well adapted human pathogens. Cryptococcus species are yeastlike fungi that cause lethal infections, especially in HIV-infected patients. Using Cryptococcus deneoformans in a murine model of infection, we examined contributors to drug resistance and demonstrated that transposon mutagenesis drives the development of 5-fluoroorotic acid (5FOA) resistance. Inactivation of target genes URA3 or URA5 primarily reflected the insertion of two transposable elements (TEs): the T1 DNA transposon and the TCN12 retrotransposon. Consistent with in vivo results, increased rates of mutagenesis and resistance to 5FOA and the antifungal drugs rapamycin/FK506 (rap/FK506) and 5-fluorocytosine (5FC) were found when Cryptococcus was incubated at 37° compared to 30° in vitro, a condition that mimics the temperature shift that occurs during the environment-to-host transition. Inactivation of the RNA interference (RNAi) pathway, which suppresses TE movement in many organisms, was not sufficient to elevate TE movement at 30° to the level observed at 37°. We propose that temperature-dependent TE mobilization in Cryptococcus is an important mechanism that enhances microbial adaptation and promotes pathogenesis and drug resistance in the human host.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Proc Natl Acad Sci U S A

DOI

EISSN

1091-6490

Publication Date

May 5, 2020

Volume

117

Issue

18

Start / End Page

9973 / 9980

Location

United States

Related Subject Headings

  • Virulence
  • Tacrolimus
  • Sirolimus
  • Retroelements
  • Orotic Acid
  • Mycoses
  • Mutagenesis
  • Mice
  • Humans
  • Host-Pathogen Interactions
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Gusa, A., Williams, J. D., Cho, J.-E., Averette, A. F., Sun, S., Shouse, E. M., … Jinks-Robertson, S. (2020). Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro. Proc Natl Acad Sci U S A, 117(18), 9973–9980. https://doi.org/10.1073/pnas.2001451117
Gusa, Asiya, Jonathan D. Williams, Jang-Eun Cho, Anna Floyd Averette, Sheng Sun, Eva Mei Shouse, Joseph Heitman, J Andrew Alspaugh, and Sue Jinks-Robertson. “Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro.Proc Natl Acad Sci U S A 117, no. 18 (May 5, 2020): 9973–80. https://doi.org/10.1073/pnas.2001451117.
Gusa A, Williams JD, Cho J-E, Averette AF, Sun S, Shouse EM, et al. Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro. Proc Natl Acad Sci U S A. 2020 May 5;117(18):9973–80.
Gusa, Asiya, et al. “Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro.Proc Natl Acad Sci U S A, vol. 117, no. 18, May 2020, pp. 9973–80. Pubmed, doi:10.1073/pnas.2001451117.
Gusa A, Williams JD, Cho J-E, Averette AF, Sun S, Shouse EM, Heitman J, Alspaugh JA, Jinks-Robertson S. Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro. Proc Natl Acad Sci U S A. 2020 May 5;117(18):9973–9980.
Journal cover image

Published In

Proc Natl Acad Sci U S A

DOI

EISSN

1091-6490

Publication Date

May 5, 2020

Volume

117

Issue

18

Start / End Page

9973 / 9980

Location

United States

Related Subject Headings

  • Virulence
  • Tacrolimus
  • Sirolimus
  • Retroelements
  • Orotic Acid
  • Mycoses
  • Mutagenesis
  • Mice
  • Humans
  • Host-Pathogen Interactions