Independent Monte Carlo dose calculation identifies single isocenter multi-target radiosurgery targets most likely to fail pre-treatment measurement.
PURPOSE: For individual targets of single isocenter multi-target (SIMT) Stereotactic radiosurgery (SRS), we assess dose difference between the treatment planning system (TPS) and independent Monte Carlo (MC), and demonstrate persistence into the pre-treatment Quality Assurance (QA) measurement. METHODS: Treatment plans from 31 SIMT SRS patients were recalculated in a series of scenarios designed to investigate sources of discrepancy between TPS and independent MC. Targets with > 5% discrepancy in DMean[Gy] after progressing through all scenarios were measured with SRS MapCHECK. A matched pair analysis was performed comparing SRS MapCHECK results for these targets with matched targets having similar characteristics (volume & distance from isocenter) but no such MC dose discrepancy. RESULTS: Of 217 targets analyzed, individual target mean dose (DMean[Gy]) fell outside a 5% threshold for 28 and 24 targets before and after removing tissue heterogeneity effects, respectively, while only 5 exceeded the threshold after removing effect of patient geometry (via calculation on StereoPHAN geometry). Significant factors affecting agreement between the TPS and MC included target distance from isocenter (0.83% decrease in DMean[Gy] per 2 cm), volume (0.15% increase per cc), and degree of plan modulation (0.37% increase per 0.01 increase in modulation complexity score). SRS MapCHECK measurement had better agreement with MC than with TPS (2%/1 mm / 10% threshold gamma pass rate (GPR) = 99.4 ± 1.9% vs. 93.1 ± 13.9%, respectively). In the matched pair analysis, targets exceeding 5% for MC versus TPS also had larger discrepancies between TPS and measurement with no GPR (2%/1 mm / 10% threshold) exceeding 90% (71.5% ± 16.1%); whereas GPR was high for matched targets with no such MC versus TPS difference (96.5% ± 3.3%, p = 0.01). CONCLUSIONS: Independent MC complements pre-treatment QA measurement for SIMT SRS by identifying problematic individual targets prior to pre-treatment measurement, thus enabling plan modifications earlier in the planning process and guiding selection of targets for pre-treatment QA measurement.
Duke Scholars
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Radiotherapy, Intensity-Modulated
- Radiotherapy Planning, Computer-Assisted
- Radiotherapy Dosage
- Radiosurgery
- Quality Assurance, Health Care
- Organs at Risk
- Nuclear Medicine & Medical Imaging
- Neoplasms
- Monte Carlo Method
- Humans
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Radiotherapy, Intensity-Modulated
- Radiotherapy Planning, Computer-Assisted
- Radiotherapy Dosage
- Radiosurgery
- Quality Assurance, Health Care
- Organs at Risk
- Nuclear Medicine & Medical Imaging
- Neoplasms
- Monte Carlo Method
- Humans