The mitochondrial multi-omic response to exercise training across rat tissues.
Mitochondria have diverse functions critical to whole-body metabolic homeostasis. Endurance training alters mitochondrial activity, but systematic characterization of these adaptations is lacking. Here, the Molecular Transducers of Physical Activity Consortium mapped the temporal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats trained for 1, 2, 4, or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart, and skeletal muscle. The colon showed non-linear response dynamics, whereas mitochondrial pathways were downregulated in brown adipose and adrenal tissues. Protein acetylation increased in the liver, with a shift in lipid metabolism, whereas oxidative proteins increased in striated muscles. Exercise-upregulated networks were downregulated in human diabetes and cirrhosis. Knockdown of the central network protein 17-beta-hydroxysteroid dehydrogenase 10 (HSD17B10) elevated oxygen consumption, indicative of metabolic stress. We provide a multi-omic, multi-tissue, temporal atlas of the mitochondrial response to exercise training and identify candidates linked to mitochondrial dysfunction.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Rats, Sprague-Dawley
- Rats
- Physical Conditioning, Animal
- Muscle, Skeletal
- Multiomics
- Mitochondria
- Male
- Humans
- Female
- Endocrinology & Metabolism
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Rats, Sprague-Dawley
- Rats
- Physical Conditioning, Animal
- Muscle, Skeletal
- Multiomics
- Mitochondria
- Male
- Humans
- Female
- Endocrinology & Metabolism