Single-stage bilateral choroid plexectomy for choroid plexus papilloma in a patient presenting with high cerebrospinal fluid output.
Cerebrospinal fluid overproduction resulting in communicating hydrocephalus is observed in patients who have choroid plexus papilloma or choroid plexus carcinoma. Less often, patients with these conditions have diffuse villous hyperplasia. Prior studies report CSF production greater than 3 L per day in these patients. These patients are treated with CSF shunting or by either unilateral choroid plexectomy or staged bilateral choroid plexectomy. The authors present a patient who had a number of congenital anomalies and a karyotype that revealed balanced translocations, 5 to 7 and 9 to 11. She presented with hydrocephalus and had CSF production of 5 L per day, greater output than ever previously reported. She was treated with a single-stage bilateral choroid plexectomy. Histopathological analysis revealed a bilateral choroid plexus papilloma. Postoperatively, the patient responded well clinically and showed radiographic improvement of her hydrocephalus. Bilateral choroid plexus papilloma has been reported in the literature as a cause for neonatal and congenital hydrocephalus. It can result in high CSF output and can be successfully treated with a single-stage bilateral choroid plexectomy. Further studies are ongoing to identify genes involved in embryogenesis of the choroid plexus.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Tomography, X-Ray Computed
- Papilloma, Choroid Plexus
- Neurosurgical Procedures
- Neurology & Neurosurgery
- Magnetic Resonance Imaging
- Lateral Ventricles
- Infant
- Hydrocephalus
- Humans
- Female
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Tomography, X-Ray Computed
- Papilloma, Choroid Plexus
- Neurosurgical Procedures
- Neurology & Neurosurgery
- Magnetic Resonance Imaging
- Lateral Ventricles
- Infant
- Hydrocephalus
- Humans
- Female