Investigation of sliced body volume (SBV) as respiratory surrogate
The purpose of this study was to evaluate the sliced body volume (SBV) as a respiratory surrogate by comparing with the real-time position management (RPM) in phantom and patient cases. Using the SBV surrogate, breathing signals were extracted from unsorted 4D CT images of a motion phantom and 31 cancer patients (17 lung cancers, 14 abdominal cancers) and were compared to those clinically acquired using the RPM system. Correlation coefficient (R), phase difference (D), and absolute phase difference (DA) between the SBV-derived breathing signal and the RPM signal were calculated. 4D CT reconstructedbased on the SBV surrogate (4D CTSBV) were compared to those clinically generated based on RPM (4D CTRPM). Image quality of the 4D CT were scored (SSBV and SRPM, respectively) from 1 to 5 (1 is the best) by experienced evaluators. The comparisons were performed for all patients, and for the lung cancer patients and the abdominal cancer patients separately. RPM boxposition (P), breathing period (T), amplitude (A), period variability (VT), amplitude variability (VA), and space-dependent phase shift (F) were determined and correlated to SSBV. The phantom study showed excellent match between the SBV-derivedbreathing signal and the RPM signal (R = 0.99, D= -3.0%, D
Duke Scholars
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Nuclear Medicine & Medical Imaging
- 5105 Medical and biological physics
- 3208 Medical physiology
- 1116 Medical Physiology
- 1103 Clinical Sciences
- 0299 Other Physical Sciences
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Nuclear Medicine & Medical Imaging
- 5105 Medical and biological physics
- 3208 Medical physiology
- 1116 Medical Physiology
- 1103 Clinical Sciences
- 0299 Other Physical Sciences