Skip to main content

18F-EF5 PET imaging as an early response biomarker for the hypoxia-activated prodrug SN30000 combined with radiation treatment in a non-small cell lung cancer xenograft model.

Publication ,  Journal Article
Chitneni, SK; Bida, GT; Yuan, H; Palmer, GM; Hay, MP; Melcher, T; Wilson, WR; Zalutsky, MR; Dewhirst, MW
Published in: J Nucl Med
August 2013

UNLABELLED: Hypoxia is a significant therapeutic problem for solid tumors because hypoxic cells are treatment-resistant and more aggressive. Hypoxia-activated prodrugs such as SN30000 use a mechanism of activation in hypoxic cells similar to that of 2-nitroimidazole hypoxia PET tracers. Therefore, we have evaluated the usefulness of 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-(18)F-pentafluoropropyl)-acetamide ((18)F-EF5) PET to monitor and predict tumor response to SN30000 plus radiation treatment (RT). METHODS: Human non-small cell lung cancer xenografts (H460) in athymic rats were imaged with (18)F-EF5 PET before and after treatment with SN30000 (90 mg/kg), with or without 15-Gy RT. The feasibility of imaging early changes in hypoxia in response to SN30000 was examined 24 h after treatment, followed by ex vivo γ-counting and immunohistochemical examination to study drug-induced apoptosis. Subsequently, the therapeutic effects of SN30000 with or without RT were evaluated in tumor growth delay studies and compared with early treatment-induced changes observed by (18)F-EF5 PET. Changes in tumor hemoglobin oxygen saturation as a function of time after treatment measured by optical spectroscopy were compared with PET data. RESULTS: The uptake of (18)F-EF5 was significantly lower in SN30000-treated tumors than in saline controls 24 h after treatment (mean standardized uptake value, 0.44 ± 0.08 vs. 0.56 ± 0.08 for control group; P < 0.05). Apoptosis was significantly higher in SN30000-treated tumors than in controls. Early treatment-induced changes in (18)F-EF5 uptake were indicative of tumor response in growth delay studies at the group level. SN30000 plus RT significantly decreased (18)F-EF5 uptake relative to baseline and resulted in complete tumor remission in 5 of 7 animals. SN30000 alone decreased (18)F-EF5 uptake, generally in tumors with high initial standardized uptake values, and showed a minor tumor growth delay effect. The changes induced by SN30000 with or without RT in (18)F-EF5 uptake correlated with baseline hypoxia levels. RT caused significant increases in tumor oxygen concentration and hemoglobin oxygen saturation. CONCLUSION: A hypoxia PET imaging agent can measure changes in tumor hypoxic fraction in response to SN30000. These results suggest the utility of (18)F-EF5 PET for monitoring early response to tumor treatment with SN30000 plus RT in the clinical development of this novel hypoxia-activated prodrug.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

J Nucl Med

DOI

EISSN

1535-5667

Publication Date

August 2013

Volume

54

Issue

8

Start / End Page

1339 / 1346

Location

United States

Related Subject Headings

  • Triazines
  • Treatment Outcome
  • Rats
  • Prodrugs
  • Positron-Emission Tomography
  • Nuclear Medicine & Medical Imaging
  • Lung Neoplasms
  • Hydrocarbons, Fluorinated
  • Humans
  • Fluorine Radioisotopes
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Chitneni, S. K., Bida, G. T., Yuan, H., Palmer, G. M., Hay, M. P., Melcher, T., … Dewhirst, M. W. (2013). 18F-EF5 PET imaging as an early response biomarker for the hypoxia-activated prodrug SN30000 combined with radiation treatment in a non-small cell lung cancer xenograft model. J Nucl Med, 54(8), 1339–1346. https://doi.org/10.2967/jnumed.112.116293
Chitneni, Satish K., Gerald T. Bida, Hong Yuan, Gregory M. Palmer, Michael P. Hay, Thorsten Melcher, William R. Wilson, Michael R. Zalutsky, and Mark W. Dewhirst. “18F-EF5 PET imaging as an early response biomarker for the hypoxia-activated prodrug SN30000 combined with radiation treatment in a non-small cell lung cancer xenograft model.J Nucl Med 54, no. 8 (August 2013): 1339–46. https://doi.org/10.2967/jnumed.112.116293.
Chitneni, Satish K., et al. “18F-EF5 PET imaging as an early response biomarker for the hypoxia-activated prodrug SN30000 combined with radiation treatment in a non-small cell lung cancer xenograft model.J Nucl Med, vol. 54, no. 8, Aug. 2013, pp. 1339–46. Pubmed, doi:10.2967/jnumed.112.116293.
Chitneni SK, Bida GT, Yuan H, Palmer GM, Hay MP, Melcher T, Wilson WR, Zalutsky MR, Dewhirst MW. 18F-EF5 PET imaging as an early response biomarker for the hypoxia-activated prodrug SN30000 combined with radiation treatment in a non-small cell lung cancer xenograft model. J Nucl Med. 2013 Aug;54(8):1339–1346.

Published In

J Nucl Med

DOI

EISSN

1535-5667

Publication Date

August 2013

Volume

54

Issue

8

Start / End Page

1339 / 1346

Location

United States

Related Subject Headings

  • Triazines
  • Treatment Outcome
  • Rats
  • Prodrugs
  • Positron-Emission Tomography
  • Nuclear Medicine & Medical Imaging
  • Lung Neoplasms
  • Hydrocarbons, Fluorinated
  • Humans
  • Fluorine Radioisotopes