Skip to main content

Prediction of Upstaged Ductal Carcinoma In Situ Using Forced Labeling and Domain Adaptation.

Publication ,  Journal Article
Hou, R; Mazurowski, MA; Grimm, LJ; Marks, JR; King, LM; Maley, CC; Hwang, E-SS; Lo, JY
Published in: IEEE Trans Biomed Eng
June 2020

OBJECTIVE: The goal of this study is to use adjunctive classes to improve a predictive model whose performance is limited by the common problems of small numbers of primary cases, high feature dimensionality, and poor class separability. Specifically, our clinical task is to use mammographic features to predict whether ductal carcinoma in situ (DCIS) identified at needle core biopsy will be later upstaged or shown to contain invasive breast cancer. METHODS: To improve the prediction of pure DCIS (negative) versus upstaged DCIS (positive) cases, this study considers the adjunctive roles of two related classes: atypical ductal hyperplasia (ADH), a non-cancer type of breast abnormity, and invasive ductal carcinoma (IDC), with 113 computer vision based mammographic features extracted from each case. To improve the baseline Model A's classification of pure vs. upstaged DCIS, we designed three different strategies (Models B, C, D) with different ways of embedding features or inputs. RESULTS: Based on ROC analysis, the baseline Model A performed with AUC of 0.614 (95% CI, 0.496-0.733). All three new models performed better than the baseline, with domain adaptation (Model D) performing the best with an AUC of 0.697 (95% CI, 0.595-0.797). CONCLUSION: We improved the prediction performance of DCIS upstaging by embedding two related pathology classes in different training phases. SIGNIFICANCE: The three new strategies of embedding related class data all outperformed the baseline model, thus demonstrating not only feature similarities among these different classes, but also the potential for improving classification by using other related classes.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

IEEE Trans Biomed Eng

DOI

EISSN

1558-2531

Publication Date

June 2020

Volume

67

Issue

6

Start / End Page

1565 / 1572

Location

United States

Related Subject Headings

  • Retrospective Studies
  • ROC Curve
  • Mammography
  • Humans
  • Female
  • Carcinoma, Intraductal, Noninfiltrating
  • Breast Neoplasms
  • Breast
  • Biomedical Engineering
  • 4603 Computer vision and multimedia computation
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Hou, R., Mazurowski, M. A., Grimm, L. J., Marks, J. R., King, L. M., Maley, C. C., … Lo, J. Y. (2020). Prediction of Upstaged Ductal Carcinoma In Situ Using Forced Labeling and Domain Adaptation. IEEE Trans Biomed Eng, 67(6), 1565–1572. https://doi.org/10.1109/TBME.2019.2940195
Hou, Rui, Maciej A. Mazurowski, Lars J. Grimm, Jeffrey R. Marks, Lorraine M. King, Carlo C. Maley, Eun-Sil Shelley Hwang, and Joseph Y. Lo. “Prediction of Upstaged Ductal Carcinoma In Situ Using Forced Labeling and Domain Adaptation.IEEE Trans Biomed Eng 67, no. 6 (June 2020): 1565–72. https://doi.org/10.1109/TBME.2019.2940195.
Hou R, Mazurowski MA, Grimm LJ, Marks JR, King LM, Maley CC, et al. Prediction of Upstaged Ductal Carcinoma In Situ Using Forced Labeling and Domain Adaptation. IEEE Trans Biomed Eng. 2020 Jun;67(6):1565–72.
Hou, Rui, et al. “Prediction of Upstaged Ductal Carcinoma In Situ Using Forced Labeling and Domain Adaptation.IEEE Trans Biomed Eng, vol. 67, no. 6, June 2020, pp. 1565–72. Pubmed, doi:10.1109/TBME.2019.2940195.
Hou R, Mazurowski MA, Grimm LJ, Marks JR, King LM, Maley CC, Hwang E-SS, Lo JY. Prediction of Upstaged Ductal Carcinoma In Situ Using Forced Labeling and Domain Adaptation. IEEE Trans Biomed Eng. 2020 Jun;67(6):1565–1572.

Published In

IEEE Trans Biomed Eng

DOI

EISSN

1558-2531

Publication Date

June 2020

Volume

67

Issue

6

Start / End Page

1565 / 1572

Location

United States

Related Subject Headings

  • Retrospective Studies
  • ROC Curve
  • Mammography
  • Humans
  • Female
  • Carcinoma, Intraductal, Noninfiltrating
  • Breast Neoplasms
  • Breast
  • Biomedical Engineering
  • 4603 Computer vision and multimedia computation