
Dose-Incorporated Deep Ensemble Learning for Improving Brain Metastasis Stereotactic Radiosurgery Outcome Prediction.
PURPOSE: To develop a novel deep ensemble learning model for accurate prediction of brain metastasis (BM) local control outcomes after stereotactic radiosurgery (SRS). METHODS AND MATERIALS: A total of 114 brain metastases (BMs) from 82 patients were evaluated, including 26 BMs that developed biopsy-confirmed local failure post-SRS. The SRS spatial dose distribution (Dmap) of each BM was registered to the planning contrast-enhanced T1 (T1-CE) magnetic resonance imaging (MRI). Axial slices of the Dmap, T1-CE, and planning target volume (PTV) segmentation (PTVseg) intersecting the BM center were extracted within a fixed field of view determined by the 60% isodose volume in Dmap. A spherical projection was implemented to transform planar image content onto a spherical surface using multiple projection centers, and the resultant T1-CE/Dmap/PTVseg projections were stacked as a 3-channel variable. Four Visual Geometry Group (VGG-19) deep encoders were used in an ensemble design, with each submodel using a different spherical projection formula as input for BM outcome prediction. In each submodel, clinical features after positional encoding were fused with VGG-19 deep features to generate logit results. The ensemble's outcome was synthesized from the 4 submodel results via logistic regression. In total, 10 model versions with random validation sample assignments were trained to study model robustness. Performance was compared with (1) a single VGG-19 encoder, (2) an ensemble with a T1-CE MRI as the sole image input after projections, and (3) an ensemble with the same image input design without clinical feature inclusion. RESULTS: The ensemble model achieved an excellent area under the receiver operating characteristic curve (AUCROC: 0.89 ± 0.02) with high sensitivity (0.82 ± 0.05), specificity (0.84 ± 0.11), and accuracy (0.84 ± 0.08) results. This outperformed the MRI-only VGG-19 encoder (sensitivity: 0.35 ± 0.01, AUCROC: 0.64 ± 0.08), the MRI-only deep ensemble (sensitivity: 0.60 ± 0.09, AUCROC: 0.68 ± 0.06), and the 3-channel ensemble without clinical feature fusion (sensitivity: 0.78 ± 0.08, AUCROC: 0.84 ± 0.03). CONCLUSIONS: Facilitated by the spherical image projection method, a deep ensemble model incorporating Dmap and clinical variables demonstrated excellent performance in predicting BM post-SRS local failure. Our novel approach could improve other radiation therapy outcome models and warrants further evaluation.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Treatment Outcome
- Radiotherapy Planning, Computer-Assisted
- Radiotherapy Dosage
- Radiosurgery
- Oncology & Carcinogenesis
- Middle Aged
- Male
- Magnetic Resonance Imaging
- Humans
- Female
Citation

Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Treatment Outcome
- Radiotherapy Planning, Computer-Assisted
- Radiotherapy Dosage
- Radiosurgery
- Oncology & Carcinogenesis
- Middle Aged
- Male
- Magnetic Resonance Imaging
- Humans
- Female